Mathematics: MCM 109 Final Exam: 1 - 8 - 2011Duration Time: 1 Hour

Academic Year: 2010 – 2011

Semester: Summer

Examiner: Dr. Mohamed Eid

Marks

3

4

5

3

6

3

4

4

4

6

6

Answer 3 Questions Only

[1](a) Find y` where: (i)
$$y = 2x^3 + 4^x$$
 (ii) $y = \cos x + \log x$ (iii) $y = x^3 \sin x$

(ii)
$$y = \cos x + \log x$$
 (iii) $y = x^3 \sin x$

(b) Find the integrals: (i)
$$\int (x^2 + 3^x + 8) dx$$

$$(ii) \int [x^2 + 3]^2 dx$$

(c) Find the eigenvalues and eigenvectors of the matrix
$$A = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}$$

[2](a)Determine maximum and minimum values of the function:
$$f(x) = x^3 - 9$$

(b) Find the integrals: (i)
$$\int (\frac{1}{x} + \frac{1}{x^2}) dx$$
 (ii) $\int (\sin x + \frac{2x}{x^2 + 3}) dx$ (ii) $\int_{0}^{2} (3x^2 + 1) dx$

$$(ii)\int (\sin x + \frac{2x}{x^2 + 3})dx$$

(ii)
$$\int_{0}^{2} (3x^{2} + 1) dx$$

[3](a) Find maximum and minimum values of the function:
$$f(x) = 2x^2 - 8x + 1$$

(b)If
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 0 & -2 \end{bmatrix}$. Find, if possible, $A + B$, $A \cdot B$, $B^t \cdot A$

(c)Discuss the consistence of the following linear system (it has one solution, no solution or infinite solutions):

$$2x + 3y - z = 1$$
, $x - y = 2$, $3x + 2y - z = 4$

[4](a)Find the integrals: (i)
$$\int x \cdot \cos x \, dx$$

(ii)
$$\int \frac{x+3}{x^2 - 3x + 2} dx$$

(b) If a medicine is available in 3 dosage forms:

First type of concentration: 1 mg /tablet

Second type of concentration: 2 mg /tablet

Third type of concentration: 3 mg /tablet

If the pharmacist wanted to prepare 8 tablets of concentration 2.5 mg/tablet by mixing whole tablets of each type. Find all possible solutions.

Good luck

Dr. Mohamed Eid

Academic Year: 2010 – 2011

Semester: Summer 10 - 7 - 2011Date:

Time: 50 Minutes

Mathematics: MCM 109

Mid-Term Exam

Examiner: Dr. Mohamed Eid

Answer all questions

[1] Find y` where:

(a)
$$y = 2x^3 + 4^x$$

(b)
$$y = \sin x \cdot \log x$$

(b)
$$y = \sin x \cdot \log x$$
 (c) $y = 8 + \ln(x^3 + x)$ (d) $y = x^{-3} + x^3$

(d)
$$y = x^{-3} + x^3$$

[2] Find the integrals:

(a)
$$\int (x^4 + 3^x) dx$$

(b)
$$\int (\frac{1}{x} + \cos x) dx$$

(b)
$$\int (\frac{1}{x} + \cos x) dx$$
 (c) $\int_{1}^{2} (x^2 + \frac{1}{x^3}) dx$ (d) $\int x \sin x dx$

[3] Find the maximum and minimum values of the function: $f(x) = 3 + 6x - x^2$

[4] A medicine in the blood decreases according to equation $y_0 - y = 6t$.

If the initial quantity $y_0 = 120$ units. Find, time by hours:

- (i) The time at which 40 % of medicine exists in the blood.
- (ii) The time at which 60 % of medicine exists in the blood.
- (iii) The time at which there is no medicine in the blood.

Good luck

Dr. Mohamed Eid

Quiz I 3-7-2011(1) Find f'(x) where: (a) $f(x) = x^3 + \log x$ (b) $f(x) = 3^x + 2\cos x$ (c) $f(x) = x^4 \tan x$

(2)Find y` where:

(a) $y = \frac{\sin x}{x^2}$

(b) $y = 4^x + \frac{1}{x^4}$ (c) $y = (3+\sin x)^2$

(3) Find the maximum and minimum values of the functions:

(a)
$$f(x) = x^2 - 4x + 2$$
 (b) $f(x) = x^3 - 3x^2$

(b)
$$f(x) = x^3 - 3x^2$$

$$(c) f(x) = x^3 + 2$$

[1] If $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \end{bmatrix}$. Find, if possible, A + B, $A^t + B$, A.B, |B.A|

- [2] Write the following linear system and discuss its consistence (it has one solution or no solution or infinite solutions): x + y + z = 6, x - y + 2z = 2,2x + 2y + 2z = 6
- [3] Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$